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Outline

Bulk and single cell
RNA sequencing

Intro to Galaxy Platform for
Bioinformatics (Tufts network or
VPN required)

https://galaxy.cluster.tufts.edu/

Work through RNAseq
example together on Galaxy

https://rbatorsky.github.io/in
tro-to-rnaseq-with-galaxy/

2 days!


https://galaxy.cluster.tufts.edu/
https://rbatorsky.github.io/intro-to-rnaseq-with-galaxy/

DNA and RNA in a cell

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg



Two common analyses

DNA Sequencing
RNA Sequencing

* Fixed number of copies of a gene
per cell

* Number of copies of a gene
transcript per cell depends on

gene expression

* Analysis goal:
Variant calling and interpretation

* Analysis goal:
e Bulk : Differential expression
e Single cell : Quantify
different cell populations

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg



Today we will cover RNA seqguencing

Sequencin

RNA Sequencing

* Number of copies of a gene
transcript per cell depends on

gene expression

Variant interpretation

* Analysis goal:
e Bulk : Differential expression
e Single cell : Quantify
different cell populations

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg
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“Bulk”™ RNA seq workflow :
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Good resource: Griffiths et al Plos Comp Bio 2015


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

RNA seq library prep and sequencing

Extracted RNA

rRNA
depletion

AAAA Poly(A)
ARAA salection
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——— Fragmentation
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Good resource: Griffiths et al Plos Comp Bio 2015



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

RNA seq library prep and sequencing

Extracted RNA

* Enrichment for mRNA < 4 rRIN/} " A Poly(f\)
* In humans, ~95%—98% of all RNA epletion . selection

molecules are rRNAs
——— Fragmentation

Library preparation o o

—AAAA

-
Sequencing “ .““

Good resource: Griffiths et al Plos Comp Bio 2015



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

RNA seq library prep and sequencing

e Enrichment for mRNA
* In humans, ~¥95%—98% of all RNA
molecules are rRNAs

 Random priming and reverse transcription
* Double stranded cDNA synthesis
* Sequencing adapter ligation

Resources:
lllumina Sequencing by Synthesis
Griffiths et al Plos Comp Bio 2015

depletion

Library preparation

Extracted RNA AAAA
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AAAA ARAA salection
I ——— Fragmentation

| —

B—R
Sequencing “ .”“


https://www.youtube.com/watch?v=fCd6B5HRaZ8
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

RNA seq bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Goal of Differential Expression in RNAseq

“How can we detect genes for which the counts of reads change between
conditions more systematically than as expected by chance”

Oshlack et al. 2010. From RNA-seq reads to differential
expression results. Genome Biology 2010, 11:220
http://genomebiology.com/2010/11/12/220



Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell
Activation and RNA Processing and Regulation of Noncoding RNA Expression in a

CD4* T Cell Line

Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

Mock Infected HIV Infected
CD4+ T Cells CD4+ T Cells
o00® 000 ...
L X X Q00

https://www.ncbi.nlm.nih.gov/pubmed/21933919



https://www.ncbi.nlm.nih.gov/pubmed/21933919

HIV litecycle

Life Cycle
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5. Replication
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4. Integration

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle



https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

HIV litecycle

HIV infection in a human host

. Acute HIV syndrome
Primary Wide dissemination of virus Death

Infection / Seeding of lymphoid organs
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https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of
host cell and viral replication levels?
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https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle
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Study findings

Using RNAseq, authors demonstrate:

[T ]

 20% of reads mapped to HIV at 12 hr, 40% at 24hr

* Downregulation of T cell differentiation genes at 12hr

e ‘Large-scale disruptions to host transcription’ at 24hr




Bulk vs Single Cell RNA Sequencing

o
¢ * .
° : 4 e
¥ %0 o
* , ‘ ° Reveals heterogeneity
. Single-Cell input and subpopulation
2 Each cell type has a distinct expression variability of
E expression profile thousands of cells
L .
P — —
-
Bulk Analysis
Bulk RNA input Average gene expression Cellular heterogeneity

from all cells masked

https://www.10xgenomics.com/blog/single-cell-rna-seg-an-introductory-overview-and-tools-for-getting-started



SCRNA cell subsets in PBMC
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https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html



10x single cell technology

S — Pool
Collect RT Remove Oil
> 90 ee > > S
Bulk
—> .
sequencing
10x Barcoded Cells 0il
Gel Beads Enzyme

Microfluidics chip Single Cell 10xBarcoded  10x Barcoded
GEMs cDNA cDNA

https://github.com/hbctraining/scRNA-seq



Bulk RNAseq for Differential Expression is OK!

=
Uninfected — —
Compare relative gene
Bulk RNA input ’ expression between conditions
B
[ — ] —
)
HIV+ U
Bulk RNA input Average gene expression

from all cells

https://www.10xgenomics.com/blog/single-cell-rna-seg-an-introductory-overview-and-tools-for-getting-started



Our (bulk) RNAseqg Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Access Galaxy

1. Connect to Tufts Network, either on
campus or via VPN

= Galaxy | Tufts

& galaxy.cluster.tufts.edu

$# Apps @ Functional Analys

2. Visit https://galaxy.cluster.tufts.edu/ I

search tools

Get Data

Send Data

Collection Operations
Expression Tools

Lift-Over

3. Log in with you cluster username and
password

Text Manipulation

Convert Formats

Filter and Sort

Join, Subtract and Group
Fetch Alignments/Sequences
Operate on Genomic Intervals
Statistics

Graph/Display Data
Phenotype Association

FASTQ Quality Control

4. In another browser window go to
course workflow:
https://rbatorsky.github.io/intro-to-

RNA-seq
SAMTOOLS
Mapping
Mothur
PICRUSt

Annotation

Picard

B sstialab @ Dasnooard () NGS_Data Analys.

Suggested screen layout

Analyze Data Workflow Visualize > Shared Data~ Ad

Welcome to Galaxy on the Tufts University
High Performance Compute Cluster!

Tufts Galaxy Support»

Take an interactive tour: Galaxy Ul  History ~Scratchbook

For information about using Galaxy at Tufts, reference Galaxy
documentation, or visit the official GalaxyProject support page.

For more information about Research Technology bioinformatics
services, visit the Biotools or email tts-research@tufts.edu.

@ hitpsiigalaxy-dev.. [ Rebecca's homep.

* 00 »@

» | B Other Bookmarks

History

search datasets [x]
rnaseq day 1scale
(empty) e

© This history is empty. You can load
your own data or get data from
an external source

® O ® @ ATuftsUniversity Research Te X =+

<« c * © 0 »@ :

Apps @ Functional Analysi.. [l Satialab @ Dashboard » B3 Other Bookmarks

& rbatorsky.github.io/intro-to-rnaseq-with-galaxy/

intro-to-rnaseq-with-galaxy

A Tufts Uni i 1 hnols Workshop

Description

This course is an introduction to RNA sequencing using Galaxy on Tufts University's Galaxy
server. For support with this workshop or Galaxy, see our Galaxy documentation or email TTS
Research Technology tts-research@tufts.edu

Goals

Bioinformatics for RNAseq has the following workflow steps

Process Raw Reads (QC, adapter
mmmmg)

Materials Needed

+ Chrome web browser
« Account on Tufts High Performance Compute Cluster
* VPN if accessing the HPC from off campus

Table of Contents

rnaseqg-with-galaxy/ ‘

23


https://access.tufts.edu/vpn
https://galaxy.cluster.tufts.edu/

Quality control on Raw Reads

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Raw reads in Fastg format

Sequence identifier
Sequence
+ (optionally lists the sequence identifier again)

Quality string

B w e




Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

Quality encoding: !"#3$%&' ()*+,-./0123456789: ;<=>?@ABCDEFGHI
I I I I I
Quality score: @........ 10........ 20........ 30........ 40

A quality score is a prediction of the probability of an error in base calling:

10 (Q10) 1in 10 90%
20 (Q20) 1in 100 99%
30 (Q30) 1in 1000 99.9%

https://www.illumina.com/science/education/sequencing-quality-scores.html



Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:
Quality encoding: !"#3$%&' ()*+,-./0123456789: ;<=>?@ABCHEFGHI

I I I I I
Quality score: 0........ 10........ 20........ 30..].]...40

A quality score is a prediction of the probability of an error in base calling:

10 (Q10) 1in 10 90%
20 (Q20) 1in 100 99%
30 (Q30) 1in 1000 99.9%

Back to our read:

C—> Q = 34-> PrObablllty < 1/1000 of an error https://www.illumina.com/science/education/sequencing-quality-scores.html



Base Quality Scores

Quality scores

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL......'..Q....'...........I...'.I.'.......I.'.'.I...
Quality encoding = !"#$%&" ()*+,-./0123456789:

33

5}

>

H

59

Sanger Phred+33,

Solexa Solexa+64,

Illumina 1.3+ Phred+64,

Illumina 1.8+ Phred+33,

; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]" ~abcdefghijklmnopgrstuvwxyz{

64

raw
raw
raw

raw

reads typically
reads typically
reads typically

reads typically

}...
| |

104 126

41)

https://en.wikipedia.org/wiki/FASTQ format



https://en.wikipedia.org/wiki/FASTQ_format

Raw read quality control

e Sequence Quality
* GCcontent
* Per base sequence content

* Adapters in Sequence



FastQC: Sequence Quality Histogram

I i IR NGy
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e Position in read (bp)
Position in read (bp)

GOOD BAD
High quality over the length of the read Read quality drops at the beginning and end

v

Sequencing “ :.“



FastQC: Per sequence GC content

@Per sequence GC content

GC distribution over all sequences

GC count per read
Theoretical Distribution
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FastQC: Per sequence GC content

@per sequence GC content @Per sequence GC content
GC distribution over all sequences GC distribution over all sequences
GC count per read GC count per read
Theoretical Distribution Theoretical Distribution
50000 50000
40000
(7)) 40000
)
©
()]
OC 30000
G— 30000
@)
S
(]
0O 20000
E 20000
>
10000
10000
. 02468 11 15 19 23 27 31 35 39 43 47 S1 55 5% 63 67 71 75 79 83 87 91 85 99 0

02468 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

Mean GC content (%) Mean GC content (%)

GOOD: follows normal distribution (sum of BAD: can indicate contamination with
deviations is < 15% of reads) adapter dimers, or another species



FastQC: Per Base Sequence Content

100
—%T

— % C
— %A

— % G
75
(7p]
©
©
Q 50
(a'ed
X
25 —
0
10 20 30 40 50
POSltlon (bp) Created with MultiQC

* Proportion of each position for which each DNA base has been called
* RNAseq data tends to show a positional sequence bias in the first ~¥12 bases

* The "random" priming step during library construction is not truly random and certain hexamers are
more prevalent than others

sequencing.qgcfail.com



https://sequencing.qcfail.com/articles/positional-sequence-bias-in-random-primed-libraries/

FastQC: Per Base Sequence Content

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

ERR458497

el ()

Position (bp)

Created with MultiQC 0.0 Z
1

EXPECTED for RNAseq BAD:
Shows a strong positional bias throughout the

reads, which in this case is due to the library
having a certain sequence that is
overrepresented



FastQC: Adapter content

X Adapters
© oeew — P
Sequencing 2
b lllumina Universal Adapter
. ) llumina Small RNA 3' Adapter
FastQC will scan each read for the presence of known a0 et pt
umina small RNA 3" Adapter
adapter sequences 0
P d Nextera Transposase Sequence
. B SOLID Small RNA Adapter
The plot shows that the adapter content rises over the . 2
course of the read w
SOIution — Adapter trimming! ® 123456780 11 13 15 17 19 21 23 25 27 20 31 33 35 37 39 41 43 45 47 49 51 53 55 57 50 61 63

Position in read (bp)
sequencing.qgcfail.com



https://sequencing.qcfail.com/

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

FastQC: Adapter Content

40

30

% Sequences

10

40 45 50 55 60
POS'tlon in read (bp) Created with MultiQC



Adapter trimming

Trim Galore! is a tool that:
e Scans and removes known lllumina or custom adapters

* Performs read trimming for low quality regions at the end of reads
* Removes reads that become too short in the trimming process



Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Read Alignment

* RNAseq data originates from spliced mRNA (no introns) full-length mRNA

5" T AAAAAA 3
* When aligning to the genome, our aligner must find a
spliced alignment for reads ‘
cDNA fragments
* We use a tool called STAR (Spliced Transcripts Alignment --- )
to a Reference) that has a exon-aware mapping algorithm. CJ aop "as
sequencing

aligned reads

Reference sequence exon exon

Dobin et al Bioinformatics 2013



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/

Sequence Alignment Map (SAM)

Reference seq

Reads R

@HD VN:1.5 SO:coordinate Header
@SQ SN:ref LN:45 section
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M O O AAAAGATAAGGATA
r003 0 ref 9 30 5S6M 0 0 GCCTAAGCTAA

r004 0 ref 16 30 6M14N5M 0 0 ATAGCTTCAGC
0
7

SA:Z:ref,29,-,6H5M,17,0; Alignment
section

* ¥ ¥ ¥

r003 2064 ref 29 17 6HSM 0 TAGGC
r001 147 ref 37 30 9M -39 CAGCGGCAT

SA:Z:ref,9,+,656M,30,1;
NM:i:1

% % * % %

+ ) ‘ T R\ CIGAR: summary of alignment, e.g. match, gap, insertion, deletion

Mapping Quality
Position

Ref Sequence name

Flag: indicates alignment information e.g. paired, aligned, etc
https://broadinstitute.github.io/picard/explain-flags.html
Read ID

www.samformat.info


https://broadinstitute.github.io/picard/explain-flags.html

Sequence Alignment Map (SAM)

Reference seq

Reads

exon exon

T

Optional Fields

Paired end info

@HD VN:1.5 SO:coordinate Header
@SQ SN:ref LN:45 section
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG x*

r002 0 ref 9 30 3S6M1P1I4M * O O AAAAGATAAGGATA *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0; Alignment
r004 0 ref 16 30 6M14N5SM * 0 O ATAGCTTCAGC * section
r003 2064 ref 29 17 6HS5M * 0 0 TAGGC * SA:Z:ref,9,+,656M,30,1;

r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

Quality Score

Sequence

www.samformat.info



Genome Annotation Standards

* STAR can use an annotation file gives the location
and structure of genes in order to improve alignment

in known splice junctions &
* Annotation is dynamic and there are at least three
major sources of annotation W

 The intersection among RefGene, UCSC, and Ensembl
annotations shows high overlap. RefGene has the
fewest unique genes, while more than 50% of genes
in Ensembl are unique

Ensembl RefGene

UCSC

* Be consistent with your choice of annotation source!

Zhao et al Bioinformatics 2015



https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1308-8

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence
STAR uses a Gene Transfer Format (GTF) file for gene annotation

Frame
Strand
Chrom Source Feature type Start Stop (Score) Attribute
chr5 hg38 refGene exon 138465492 | 138466068 + | . gene_id "EGR1";
chr5 hg38 refGene CDS 138465762 | 138466068 +| 0 gene_id "EGR1";
chr5 hg38 refGene start_codon 138465762 | 138465764 + | . gene_id "EGR1";
chr5 hg38 refGene CDS 138466757 | 138468078 +| 2 gene_id "EGR1";
chr5 hg38 refGene exon 138466757 | 138469315 + | . gene_id "EGR1";
chr5 hg38 refGene stop_codon 138468079 | 138468081 + | . gene_id "EGR1";

https://useast.ensembl.org/info/website/upload/gff.html



https://useast.ensembl.org/info/website/upload/gff.html

A note on standards

HOW STANDARDS PROUFERATE:
(652 A/C (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

17! RiDICULOLS! SOON:
WE NEED To DEVELOP
N
SITUATON: || JE AVERAL R | | SITUATION:
THERE ARE USE CASES.  yep THERE ARE

|4 COMPETING |5 COMPETING

GTANDPRDS. ‘O / GTANDPRDS.
AR

https://xkcd.com/927/



Visualizing reads with JBrowse
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Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Counting reads for each gene

Gene A Gene B

Reference seq exon exon exon

Read HEEE — BE I

— I
R I $z




Counting reads: featurecounts

 The mapped coordinates of each read are
compared with the features in the GTF file

e Reads that overlap with a gene by >=1 bp are
counted as belonging to that feature

* Ambiguous reads will be discarded

> <

gene A

ambiguous



Counting reads: featurecounts

 The mapped coordinates of each read are
compared with the features in the GTF file

e Reads that overlap with a gene by >=1 bp are
counted as belonging to that feature

* Ambiguous reads will be discarded

Result is a gene count matrix:
A 1000 1000 100 10

10 1 5 6
C 10 1 10 20

gene_B

> <

gene A

ambiguous



Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Testing for Differential Expression

Sample A Reads Sample B Reads

S e e S
The goal Of differentlal eXpreSSIOn analySIS 'ﬁﬁ?%?%?%?%ﬁ%%%??%ﬁ“}i} -‘-';‘E: ..... |='|-::::::'--:-:-:.=1:-::::::.-=1.:-

(DE) is to find gene differences between — e o e e [N m— e - e —
conditions, developmental stages, treatments

etc. _E'i::::::l-'.'.:'._!.:._ '.:::::::E_ b T Ry e

sanam.... "ag SaBG BAGC -3 59 gn

In particular DE has two goals:
SNSRI EENE  ammowsrersegswmmoe

* Estimate the magnitude of expression
differences; -?.!-:.'-?._-T-:-:":-M-'i-'i-;a:a.".ﬁ.-"-.'.'g:.

.-l.l.“ .II-- Dandal ‘.." | ] -IIII‘
".l"'.!‘.'.'-T.r.-i"_‘__':.. o e T T
P rars

. . o fro . L oL L]
* Estimate the significance of expression sl e e e

differences. SRR RRUCAREL R TTRS
R R L T

[ ]
T e T b Tl

L]
RS AU IS W

1 Gene DE | 1 Gene DE |

https://hbctraining.github.io/DGE_workshop



Differential Expression with DESeq?2

Read counts associated

with genes

Normalization

All steps are done with one click in
— Quality control Galaxy!

Unsupervised clustering
analyses

Differential Expression
Analysis

https://hbctraining.github.io/DGE_workshop



Normalization

Sample A Reads
The number of sequenced reads mapped to a - -
gene depends on T SRR C
gRafE  ERERRD G

* Gene Length M — GeneX +— 1
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Normalization

Sample A Reads Sample B Reads
The number of sequenced reads mapped to a

gene depends on o et iE%  mmgm o a pmesweomm
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Normalization

The number of sequenced reads mapped to a
gene depends on

* Gene Length

e Sequencing depth

* The expression level of other genes in the
sample

Sample A Reads
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Normalization

Sample A Reads Sample B Reads
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Normalization eliminates the factors that are not of interest!
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Normalization: DESeqg2 Median of Ratios

Accounts for both sequencing depth and composition
Step 1: creates a pseudo-reference sample (row-wise geometric mean)

For each gene, a pseudo-reference sample is created that is equal to the geometric
mean across all samples.

gene sampleA sampleB pseudo-reference sample

1 1000 1000 /(1000 x 1000) = 1000
2 10 1 /(10 % 1) =3.16

https://hbctraining.github.io/DGE_workshop



Normalization: DESeqg2 Median of Ratios

Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference. Since most genes aren't
differentially expressed, ratios should be similar.

ene sampleA samopleB pseudo-reference ratio of ratio of
8 P P sample sampleA/ref sampleB/ref
1 1000 1000 1000 1000/1000 = 1.00 1000/1000 = 1.00

2 10 1 3.16 10/3.16 = 3.16 1/3.16 = 0.32

https://hbctraining.github.io/DGE_workshop



Normalization: DESeqg2 Median of Ratios

Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference.

pseudo-reference ratio of ratio of
sample sampleA/ref sampleB/ref

1 1000 1000 1000 1000/1000 1000/100¢
2 10 1 3.16 10/3.16 4 3.16 1/3.16 ¥ 0.32

gene sampleA sampleB

Median = 2.08 Median = 0.66
Step 3: calculate the normalization factor for each sample (size factor)

The median value of all ratios for a given sample is taken as the normalization factor
(size factor) for that sample:

https://hbctraining.github.io/DGE_workshop



Normalization: DESeg2 Median of Ratios

Visualization of normalization factor for a sample:

* Median should be ~1 for each sample,
otherwise data should be examined for the
presence of large outliers

e This method is robust to imbalance in up-
/down- regulation and large numbers of
differentially expressed genes

Assumptions of this method:
Not all genes are differentially expressed

Frequency

1500 2500

500

sample 1/ pseudo-reference sample

Median value

...|.||I|i

https://hbctraining.github.io/DGE_workshop



Normalization: DESeqg2 Median of Ratios

Step 4: calculate the normalized count values using the normalization factor

This is performed by dividing each raw count value in a given sample by that
sample's size factor to generate normalized count values.

SampleA normalization factor = 2.08

SampleB normalization factor = 0.66

Raw Counts Normalized Counts
gene sampleA sampleB gene sampleA sampleB
1 1000 1000 1 1000/2.08 = 1000 /0.66 =
9 10 1 480.77 1515.16

2 10/2.08 =4.81 1/0.66 =1.52

https://hbctraining.github.io/DGE_workshop



Normalization methods

Normalization method Description Accounted factors For Differential Expression?

counts scaled by total number of

CPM (counts per million) reads in a sample sequencing depth NO
TPM (transcripts per kilobase counts per length of transcript sequencing depth and gene NO
million) (kb) per million reads mapped length

RPKM/FPKM (reads/fragments sequencing depth and gene

per kilobase of exon per million  similar to TPM NO
length
reads/fragments mapped)
counts divided by sample-specific
size factors determined by :
. : h RNA
DESeqg2’s median of ratios [1] median ratio of gene counts sequenc.lr)g depth and YES
. . composition
relative to geometric mean per
gene

https://hbctraining.github.io/DGE_workshop


https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-10-r106

Unsupervised Clustering

Read counts associated

with genes

Normalization

— Quality control

Unsupervised clustering
analyses




Principle Component Analysis

Here is an example with three genes measured in many samples:

Gene 1 1000 1000 100 10
Gene 2 10 1 5 6
Gene 3 10 1 10 20

original data space

Gene 1

P C A component space
ﬁ
2 (N) ] +'|-+ iy
3 - i % H A1
&) -
e
PC1

Do your samples cluster as
expected?



Differential Expression with DESeq?2

Read counts associated

with genes

Normalization

— Quality control

Unsupervised clustering
analyses

Differential Expression
Analysis

https://hbctraining.github.io/DGE_workshop



Multi-factor experiment design

Factor 1:

Infection status (Mock or HIV)
Mock -— HIV

‘ ‘ ‘ ' ' ‘ 12 hour Factor 2:
Time (12 or 24 hr)
Q00 000 ..



Multi-factor experiment design

Mock — HIV

QO0O® OOD uhw
Q00 000

» Differential Expression compares two conditions
* We'll choose Infection status at 12 hr (Mock or HIV) for comparison

* We could also choose time, or a combination of multiple factors



DESeq?2 Test for Ditferential Expression

Expression level

Significant

‘ Condition A data difference

‘ Condition B data

No significant difference

DESeq2 models the gene counts for each gene as a negative bionomial distribution
One of the fitting parameters is the Log2foldChange for each gene

Image credit: Paul Pavlidis, UBC
https://hbctraining.github.io/DGE_workshop/lessons/04_DGE_DESeq2_analysis.html


https://hbctraining.github.io/DGE_workshop_salmon/lessons/05_DGE_DESeq2_analysis2.html

Wald Test

Statistical test (like T-test) used for hypothesis testing:

* Null hypothesis: Log2foldChange(HIV counts/ Mock counts) ==
» Alternative hypothesis: Log2FC(HIV counts/ Mock counts) !=0

DESeq2 implements the Wald test by:
* Taking the Log2foldChange and dividing it by its standard error, resulting in a z-statistic

* The z-statistic is compared to a standard normal distribution, and a p-value is computed reporting the probability that
a z-statistic at least as extreme as the observed value would be selected at random

* If the p-value is small we reject the null hypothesis and state that there is evidence against the null (i.e. the gene is
differentially expressed).

https://hbctraining.github.io/DGE_workshop



DESeq2 Results table

EGR1 1273.65 -2.22 0.12 -18.65 1.25E-77 1.44E-73
MYC 5226.12 1.41 0.11 12.53 4.95E-36 2.87E-32
OPRK1 78.35 -1.83 0.17 =109 4.11E-26 1.59E-22
CCNI2 7427.12 0.93 0.10 9.43 4.27E-21 1.24E-17
STRAG 785.78 0.97 0.11 8.61 7.29E-18 1.69E-14

* Mean of normalized counts — averaged over all samples from two conditions



DESeq2 Results table

EGR1 1273.65 -2.22 0.12 -18.65 1.25E-77 1.44E-73
MYC 5226.12 1.41 0.11 12.53 4.95E-36 2.87E-32
OPRK1 78.35 -1.83 0.17 =109 4.11E-26 1.59E-22
CCNI2 742712 0.93 0.10 9.43 4.27E-21 1.24E-17
STRAG 785.78 0.97 0.11 8.61 7.29E-18 1.69E-14

* Mean of normalized counts — averaged over all samples from two conditions

* Log of the fold change between two conditions = Log2( HIV counts /Mock counts )



DESeq2 Results table

EGR1 1273.65 2202 0.12 -18.65 1.25E-77 1.44E-73
MYC 5226.12 1.41 0.11 12.53 4.95E-36 2.87E-32
OPRK1 78.35 -1.83 0.17 =109 4.11E-26 1.59E-22
CCNI2 742712 0.93 0.10 9.43 4.27E-21 1.24E-17
STRAG 785.78 0.97 0.11 8.61 7.29E-18 1.69E-14

* Mean of normalized counts — averaged over all samples from two conditions
* Log2 of the fold change between two conditions

» StdErr, standard error: Log2(HIV counts/Mock counts) = [-2.22 - 0.12, -2.22 + 0.12]



DESeq2 Results table

EGR1 1273.65 2202 0.12 -18.65 1.25E-77 1.44E-73
MYC 5226.12 1.41 0.11 12.53 4.95E-36 2.87E-32
OPRK1 78.35 -1.83 0.17 -10.57 4.11E-26 1.59E-22
CCNI2 742712 0.93 0.10 9.43 4.27E-21 1.24E-17
STRAG 785.78 0.97 0.11 8.61 7.29E-18 1.69E-14

* Mean of normalized counts — averaged over all samples from two conditions
* Log of the fold change between two conditions
e StdErr, standard error

* Wald Stats — statistical test for hypothesis testing
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* Mean of normalized counts — averaged over all samples from two conditions

* Log2 of the fold change between two conditions

* Wald Stats — statistical test for hypothesis testing

* P-value — the probability that the Wald statistic is as extreme as observed if the null hypothesis were true

* Adjusted P value —accounting for multiple testing correction



DESeq2 Results table

EGR1 1273.65 2202 0.12 -18.65 1.25E-77 1.44E-73
MYC 5226.12 1.41 0.11 12.53 4.95E-36 2.87E-32
OPRK1 78.35 -1.83 0.17 =109 4.11E-26 1.59E-22
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* Mean of normalized counts — averaged over all samples from two conditions

* Log of the fold change between two conditions

* Wald Stats — statistical test for hypothesis testing

* P-value —the probability that the Wald statistic is as extreme as observed if the null hypothesis were true

* Adjusted P value — accounting for multiple testing correction



DESeq2 P-value histogram

Histogram of raw p-values for all genes examined
e P-value: Probability of getting a log2FoldChange as

extreme as observed if the true log2FoldChange = 0 for
that gene (null hypothesis)

count

Truth How to interpret:

I:l"“  Random P-values are expected to be uniform, if you have
ternative
true positives you should see a peak close to zero

] |
0.50 0.75 1.00
P-values

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/



http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

DESeqg2 MA plot

Shows the relationship between

M: The difference in expression
Log(HIV) — Log(Mock) = Log(HIV/Mock)

A: Average expression strength Average(Mock,
HIV)

Genes with adjusted p-value < 0.1 are in red

Gives an overview of your results

log fold change

-2

MA-plot for condition: mock vs hiv

DiE Genes

I I I I
1e-01 1e+01 1e+03 1e+05

mean of normalized counts



Conclusions

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




References

DESeq?2 vignette (R/Rstudio):
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ferential-expression-analysis

HBC Training (Command line/R):
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https://galaxyproject.org/tutorials/rb_rnaseq/

Outline

Bulk and single cell
RNA sequencing

Intro to Galaxy Platform for
Bioinformatics (Tufts network or
VPN required)

https://galaxy.cluster.tufts.edu/

Work through RNAseq
example together on Galaxy

https://rbatorsky.github.io/in
tro-to-rnaseq-with-galaxy/

Turn in workshop
guestions on Canvas


https://galaxy.cluster.tufts.edu/
https://rbatorsky.github.io/intro-to-rnaseq-with-galaxy/

= Galaxy

+ Web-based platform for running data analysis and

integration, geared towards bioinformatics
> (Open-source
> Developed at Penn State, Johns Hopkins, OHSU and Cleveland Clinic
with many more outside contributions
> Large and extremely responsive community
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Galaxy on the Tufts HPC

é User laptop

|

Job scheduler
(SLURM)
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User Interface

= Galaxy Tufts Analyze Data Workflow Visualize~ Shared Data~ Admin Help~ User~ 3a=
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Welcome to Galaxy on the Tufts University High .
Get Data Unnamed history
Performance Compute Cluster!
Send Data (empty) e
Collection Operations Tufts Galaxy Support»
Expression Tools © This history is empty. You can load
Lift-Over Take an interactive tour: Galaxy Ul History  Scratchbook your own data or get data from
an external source
Text Manipulation For information about using Galaxy at Tufts, reference Galaxy
Convert Formats documentation, or visit the official GalaxyProject support page.
Filter and Sort For more information about Research Technology bioinformatics
Join, Subtract and Group services, visit the Biotools or email tts-research@tufts.edu.

Fetch Alignments/Sequences
Operate on Genomic Intervals
Statistics

Graph/Display Data
Phenotype Association
FASTQ Quality Control
RNA-seq

SAMTOOLS
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RNA extraction

¥ MRNA enrichment

{  Fragmentation ~200 bp

Y

Random priming + ~
reverse transcription Mk

/

Double e AP
stranded cDNA / oo
synthesis
=
___J—
-
Sequencing |
adapter ligation
PCR =
_—
—
—
A

Good resource: Griffiths et al Plos Comp Bio 2015



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Next Generation Sequencing (NGS)

1. PREPARE GENOMIC DNA SAMPLE 2. ATTACH DNA TO SURFACE 3. BRIDGE AMPLIFICATION

Randomly fragment genomic DNA Bind single-stranded fragments randomly to Add unlabeled nudeotides and enzyme to

and lgate adapters to both ends of the the inside surface of the flow cell channels. initiate solid-phase bridge amplification.
fragments.

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

4. FRAGMENTS BECOME DOUBLE 5. DENATURE THE DOUBLE-STRANDED 6. COMPLETE AMPLIFICATION
STRANDED MOLECULES

The enzyme incorporates nudeotides to Denaturation leaves single-stranded Several milion dense dusters of double-

build double-stranded bridges on the solid- templates anchored to the substrate. stranded DNA are generated in each channel
phase substrate. of the flow cell.

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

7. DETERMINE FIRST BASE 8. IMAGE FIRST BASE 9. DETERMINE SECOND BASE

Laser
First chemistry cyde: toinitiate the first After laser exditation, capture the image of Second chemistry cyde: to initiate the
sequend ng cyde, add all four label ed reversible emitted fluorescence from each duster on the next sequending cyde, add all four labeled
terminators, primers and DNA polymerase flow cell. Record the identity of the first base reversible terminators and enzyme to the

enzyme to the flow cell. for each duster. flow cell

https://sites.google.com/site/himbcorelab/illumina sequencing
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Final Heatmap — not part of DESeq?2 output
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Common RNAseq analysis goals

- Novel transcript discovery

- Transcriptome assembly

- Single cell analysis

- Quantify alternative splicing
- Differential Expression

Replace with actual heatmap

condition
1 SNF2
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0.5
0

IE I5 I3 I3

ydal ZINS
Ldol ZINS
gdal ZINS
zdal ZINS
£dai Z4NS
zda 1



Fig 1. An overview of the central dogma of molecular biology.
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Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.
PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi.1004393

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393
@ PLOS COMPUTATIONAL
N BIOLOGY



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Fig 2. RNA-seq data generation.
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Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.
PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi.1004393
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Fig 3. RNA-seq library fragmentation and size selection strategies that influence interpretation and analysis.
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Fig 4. RNA-seq library enrichment strategies that influence interpretation and analysis.
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Fig 6. Comparison of stranded and unstranded RNA-seq library methods and their influence on
interpretation and analysis.
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Test for Differential Expression

Expression Level of a Gene

DESeq2 will seek to fit a probability >
distribution to each gene we Condition A @ o . .o Significant
measured and perform a statistical ConditionB @ ° ‘. o) ... ¢ Difference
test to determine whether there is Condition mean @

a difference between conditions Global mean ©

NI\

Deviation from global mean
>
.u. No Significant
® Difference

AN



Reference-based vs Reference-free RNAseo

RNAseq can be roughly divided into two "types":
* Reference genome-based - an assembled genome exists for a species for which an RNAseq experiment is
performed. It allows reads to be aligned against the reference genome and significantly improves our ability

to reconstruct transcripts. This category would obviously include humans and most model organisms

* Reference genome-free - no genome assembly for the species of interest is available. In this case one would
need to assemble the reads into transcripts using de novo approaches. This type of RNAseq is as much of an
art as well as science because assembly is heavily parameter-dependent and difficult to do well.

In this lesson we will focus on the Reference genome-based type of RNA seq.

https://galaxyproject.org/tutorials/rb rnaseq/
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FastQC: Adapter content

The cause: The “insert” sequence is shorter than the
read, and the read contains part of the adapter
sequence

FastQC will scan each read for the presence of known
adapter sequences

The plot shows that the adapter content rises over the
course of the read

Solution — Adapter trimming!
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STAR Aligner (Spliced Transcripts Alignment to a

Reference)

(a) Map Map again
Highly accurate, memory intensive aligner MMP 1 MMP 2 :

Two phase mapping process

RNA-seq read

- .. ---DJL--

1. Find Maximum Mappable Prefixes (MMP) in a
read. MMP can be extended by

e mismatches exons in the genome
* Indels (b) (c)
e soft-clipping Map Map
MMP 1 ~ Extend MMP1  Trim
mismatches A-tail, or adapter,

or poor quality tail

Dobin et al Bioinformatics 2013



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/

STAR Aligner (Spliced Transcripts Alignment to a

Reference)

Highly accurate, memory intensive aligner
Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a
read. MMP can be extended by
* mismatches
* Indels
e soft-clipping

2. Clustering MMP, stitching and scoring to
determine final read location

(a) Map Map again
MMP 1 MMP 2

RNA-seq read

- .. ---DJL--

exons in the genome

(b) (c)
Map Map
MMP1  Extend MMP1 — Trim
mismatches A-tail, or adapter,

or poor quality tail

Dobin et al Bioinformatics 2013
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STAR Aligner (Spliced Transcripts Alignment to a

Reference)

Highly accurate, memory intensive aligner
Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a
read. MMP can be extended by
* mismatches
* Indels
e soft-clipping

2. Clustering MMP, stitching and scoring to
determine final read location

Output is a Sequence Alignment Map (SAM) file

(a) Map Map again
MMP 1 MMP 2

RNA-seq read

- .. ---PJL--

exons in the genome

(b) (c)
Map Map
MMP1  Extend MMP1 — Trim
mismatches A-tail, or adapter,

or poor quality tail

Dobin et al Bioinformatics 2013
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Tracking read numbers

Revisit quality control after each processing step!

Number of Reads Source ________JRest

Raw reads FastQC run 1 8M
After Trimming FastQC run 2 7.1 M
Aligned to genome STAR log 6 M

Associated with genes FeatureCounts log 54 M



Multi-factor experiment design
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10x single cell technology
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