RNA-seq to study HIV Infection in cells

Rebecca Batorsky Sr Bioinformatics Scientist March 2021

Research Technology Team

Delilah Maloney High Performance Computing Specialist

Kyle Monahan Senior Data Science Specialist

Shawn Doughty Manager, Research Computing

Rebecca Batorsky Senior Bioinformatics Scientist

Bioinformatics Intern

Chris Barnett Senior Geospatial Analyst

Tom Phimmasen Senior Data Consultant

Patrick Florance Director, Academic Data Services

Jake Perl Digital Humanities NLP Specialist

Carolyn Talmadge Senior GIS Specialist

Uku-Kaspar Uustalu Data Science Specialist

✓ Consultation on Projects and Grants
✓ High Performance Compute Cluster
✓ Workshops

https://it.tufts.edu/research-technology

Outline

Bulk and single cell RNA sequencing

> Intro to Galaxy Platform for Bioinformatics (Tufts network or VPN required)

> https://galaxy.cluster.tufts.edu/

Work through RNAseq example together on Galaxy

https://rbatorsky.github.io/in tro-to-rnaseq-with-galaxy/ 2 days!

DNA and RNA in a cell

Two common analyses

DNA Sequencing 🔨

- Fixed number of copies of a gene per cell
- Analysis goal: Variant calling and interpretation

RNA Sequencing

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
 - Bulk : Differential expression
 - Single cell : Quantify different cell populations

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg

Today we will cover RNA sequencing

RNA Sequencing

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
 - Bulk : Differential expression
 - Single cell : Quantify different cell populations

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg

Cell nucleus

DNA

RNA

Protein

"Bulk" RNA seq workflow

Library prep and sequencing

Bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

Resources: <u>Illumina Sequencing by Synthesis</u> <u>Griffiths et al Plos Comp Bio 2015</u>

RNA seq bioinformatics

Good resource: <u>Griffiths et al Plos Comp Bio 2015</u>

Goal of Differential Expression in RNAseq

"How can we detect genes for which the counts of reads change between conditions **more systematically** than as expected by chance"

Oshlack et al. 2010. From RNA-seq reads to differential expression results. Genome Biology 2010, 11:220 http://genomebiology.com/2010/11/12/220

Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4⁺ T Cell Line

Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

HIV lifecycle

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

HIV lifecycle

HIV infection in a human host

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of host cell and viral replication levels?

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

10

HIV RNA Copies per ml Plasma

104

103

 10^{2}

Study findings

Using RNAseq, authors demonstrate:

- 20% of reads mapped to HIV at 12 hr, 40% at 24hr
- Downregulation of T cell differentiation genes at 12hr
- 'Large-scale disruptions to host transcription' at 24hr

Log, (inf/mock)

Bulk vs Single Cell RNA Sequencing

scRNA cell subsets in PBMC

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html

10x single cell technology

https://github.com/hbctraining/scRNA-seq

Bulk RNAseq for Differential Expression is OK!

Compare relative gene expression between conditions

https://www.10xgenomics.com/blog/single-cell-rna-seq-an-introductory-overview-and-tools-for-getting-started

Our (bulk) RNAseq Workflow

Access Galaxy

- 1. Connect to Tufts Network, either on campus or via <u>VPN</u>
- 2. Visit https://galaxy.cluster.tufts.edu/
- 3. Log in with you cluster username and password
- 4. In another browser window go to course workflow: <u>https://rbatorsky.github.io/intro-to-</u> rnaseq-with-galaxy/

Suggested screen layout

Quality control on Raw Reads

Raw reads in Fastq format

@SRR098401.109756285 GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...

CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...

+

- 1. Sequence identifier
- 2. Sequence
- 3. + (optionally lists the sequence identifier again)
- 4. Quality string

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

Quality encoding: !"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI | | | | | Quality score: 0.....10.....20.....30.....40

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Back to our read:

@SRR098401.109756285 GACTCACGTAACTTTAAACTCTAACAGAAATATACTA.... + CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD... $C \rightarrow Q = 34 \rightarrow Probability < 1/1000 of an error$

https://www.illumina.com/science/education/sequencing-quality-scores.html

Base Quality Scores

https://en.wikipedia.org/wiki/FASTQ_format

Raw read quality control

- Sequence Quality
- GC content
- Per base sequence content
- Adapters in Sequence

FastQC: Sequence Quality Histogram

Position in read (bp)

GOOD

High quality over the length of the read

BAD

Read quality drops at the beginning and end

FastQC: Per sequence GC content

Per sequence GC content

FastQC: Per sequence GC content

Per sequence GC content

GOOD: follows normal distribution (sum of deviations is < 15% of reads)

BAD: can indicate contamination with adapter dimers, or another species

FastQC: Per Base Sequence Content

- Proportion of each position for which each DNA base has been called
- RNAseq data tends to show a positional sequence bias in the first ~12 bases
- The "random" priming step during library construction is not truly random and certain hexamers are more prevalent than others

sequencing.qcfail.com

FastQC: Per Base Sequence Content

EXPECTED for RNAseq

BAD:

Shows a strong positional bias throughout the reads, which in this case is due to the library having a certain sequence that is overrepresented

FastQC: Adapter content

FastQC will scan each read for the presence of known adapter sequences

The plot shows that the adapter content rises over the course of the read

Solution – Adapter trimming!

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

% Sequences Position in read (bp) Created with MultiQC

FastQC: Adapter Content
Adapter trimming

Trim Galore! is a tool that:

- Scans and removes known Illumina or custom adapters
- Performs read trimming for low quality regions at the end of reads
- Removes reads that become too short in the trimming process

Workflow

Read Alignment

- RNAseq data originates from spliced mRNA (no introns)
- When aligning to the genome, our aligner must find a spliced alignment for reads
- We use a tool called STAR (Spliced Transcripts Alignment to a Reference) that has a exon-aware mapping algorithm.

Sequence Alignment Map (SAM)

QHD V	/N:1.5	5 SO	: CO	ord	inate							Header
626 2	SN:rei		:45									0000011
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*		
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*		
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29,-,6H5M,17,0;	Alignment
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*		section
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:ref,9,+,5S6M,30,1;	
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*]	NM:i:1	
	•	•	4	•		cu	mm	าวทา	of alignment og	mat	tch gap insertion deletion	n

CIGAR: summary of alignment, e.g. match, gap, insertion, deletion Mapping Quality

Position

Ref Sequence name

Flag: indicates alignment information e.g. paired, aligned, etc https://broadinstitute.github.io/picard/explain-flags.html

Read ID

Sequence Alignment Map (SAM)

www.samformat.info

Genome Annotation Standards

- STAR can use an annotation file gives the location and structure of genes in order to improve alignment in known splice junctions
- Annotation is dynamic and there are at least three major sources of annotation
- The intersection among RefGene, UCSC, and Ensembl annotations shows high overlap. RefGene has the fewest unique genes, while more than 50% of genes in Ensembl are unique
- Be consistent with your choice of annotation source!

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence STAR uses a Gene Transfer Format (GTF) file for gene annotation

							Fran	ne
						Stra	and	
Chrom	Source	Feature type	Start	Stop	(Sco	re)		Attribute
chr5	hg38 refGene	exon	138465492	138466068		+		gene id "EGR1":
								80.00_0. 2002)
chr5	hg38_refGene	CDS	138465762	138466068		+	0	gene_id "EGR1";
chr5	hg38_refGene	start_codon	138465762	138465764		+		gene_id "EGR1";
chr5	hg38_refGene	CDS	138466757	138468078		+	2	gene_id "EGR1";
chr5	hg38_refGene	exon	138466757	138469315		+	•	gene_id "EGR1";
chr5	hg38_refGene	stop_codon	138468079	138468081		+		gene_id "EGR1";

A note on standards

https://xkcd.com/927/

Visualizing reads with JBrowse

Genome	e Track	View	Help	Tools														oo Share
0	20,000,00	0	40,000,00	0 60	000,000,000	80,000,0	00	100,000,000	0 12	0,000,0	00	14	0, 00,	000	16	60,000	,000	180,000
			\langle	$\rightarrow \rightarrow$	Qe) @ @	chr5 👻	chr5:13846	6156313846	9771 (8	.21 Kb)	G	io i	2				
	138,462,50	0				138,465,000					138,46	\$7,500	_	_		_		1:
Refere	nce sequence		Zoom ii	n to see seque	ence			Zoom in to se	ee sequence					Zo	om in	to see	sequence	2
hg38_	genes.bed						EGR1	•	E	GR1	-		-	•				
								FCP1		CP1	-		-		-			
								EGR1 +	L	OK1				EGR1				
© HIV_12	hr_rep1_pass	_subsamp	ple.fastq.gz				3	۱v	-		ς.		W	-	ų	=	1	
© HIV_12	hr_rep2_pass?	_subsamp	ple.fastq.gz				٠v				Ţ		•	n,	Ŵ			
© HIV_12	hr_rep3_pass	_subsamp	ple.fastq.gz				W	ŀ.		v			W.	1	N:			
Mock_	12hr_rep1_pa	ss_subsar	nple.fastq.g	gz						• •			-		_		-	
Mock_	12hr_rep2_pa	ss_subsar	nple.fastq.g	3z			-			-		-	•		-		-	
Mock_	12hr_rep3_pa	ss_subsar	nple.fastq.į	gz	-			-			•	-			••			

Workflow

Counting reads for each gene

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Result is a gene count matrix:

Gene	Sample 1	Sample 2	Sample 3	Sample 4
А	1000	1000	100	10
В	10	1	5	6
С	10	1	10	20

Workflow

Testing for Differential Expression

The goal of differential expression analysis (DE) is to find gene differences between conditions, developmental stages, treatments etc.

In particular DE has two goals:

- Estimate the *magnitude* of expression differences;
- Estimate the *significance* of expression differences.

Differential Expression with DESeq2

Normalization

The number of sequenced reads mapped to a gene depends on

• Gene Length

Sample A Reads

Normalization

The number of sequenced reads mapped to a gene depends on

- Gene Length
- Sequencing depth

Normalization

The number of sequenced reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample

ed reads mapped to a

Sample B Reads

https://hbctraining.github.io/DGE_workshop

Normalization

The number of sequenced reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample
- It's own expression level

Normalization eliminates the factors that are not of interest!

Accounts for both sequencing depth and composition

Step 1: creates a pseudo-reference sample (row-wise geometric mean)

For each gene, a pseudo-reference sample is created that is equal to the geometric mean across all samples.

gene	sampleA	sampleB	pseudo-reference sample
1	1000	1000	$\sqrt(1000 * 1000)$ = 1000
2	10	1	$\sqrt(10*1)$ = 3.16

Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference. Since most genes aren't differentially expressed, ratios should be similar.

gene	sampleA	sampleB	pseudo-reference sample	ratio of sampleA/ref	ratio of sampleB/ref
1	1000	1000	1000	1000/1000 = 1.00	1000/1000 = 1.00
2	10	1	3.16	10/3.16 = 3.16	1/3.16 = 0.32
			•••		

Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference.

gene	sampleA	sampleB	pseudo-reference sample	ratio of sampleA/ref		ratio of sampleB/ref		
1	1000	1000	1000	1000/1000	= 1.00	1000/100) = 1.00	
2	10	1	3.16	10/3.16 =	3.16	1/3.16 =	0.32	
				Med	lian = 2.08	Me	dian = 0.66	

 v_{10}

Step 3: calculate the normalization factor for each sample (size factor)

The median value of all ratios for a given sample is taken as the normalization factor (size factor) for that sample:

Visualization of normalization factor for a sample:

- Median should be ~1 for each sample, otherwise data should be examined for the presence of large outliers
- This method is robust to imbalance in up-/down- regulation and large numbers of differentially expressed genes

Assumptions of this method: Not all genes are differentially expressed

Step 4: calculate the normalized count values using the normalization factor

This is performed by dividing each raw count value in a given sample by that sample's size factor to generate normalized count values.

SampleA normalization factor = 2.08

SampleB normalization factor = 0.66

Raw Counts

gene	sampleA	sampleB			
1	1000	1000			
2	10	1			

Normalized Counts

gene	sampleA	sampleB
1	1000/2.08 = 480.77	1000 / 0.66 = 1515.16
2	10/2.08 = 4.81	1 / 0.66 = 1.52

Normalization methods

Normalization method	Description	Accounted factors	For Differential Expression?
CPM (counts per million)	counts scaled by total number of reads in a sample	sequencing depth	NO
TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped	sequencing depth and gene length	NO
RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	NO
DESeq2's median of ratios [<u>1</u>]	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	YES

Unsupervised Clustering

Principle Component Analysis

Here is an example with three genes measured in many samples:

Gene	Sample 1	Sample 2	Sample 3	Sample 4
Gene 1	1000	1000	100	10
Gene 2	10	1	5	6
Gene 3	10	1	10	20

original data space

Do your samples cluster as expected?

Differential Expression with DESeq2

https://hbctraining.github.io/DGE_workshop

Multi-factor experiment design

Factor 1: Infection status (Mock or HIV)

Factor 2: Time (12 or 24 hr)

Multi-factor experiment design

- Differential Expression compares two conditions
- We'll choose Infection status at 12 hr (Mock or HIV) for comparison
- We could also choose time, or a combination of multiple factors

DESeq2 Test for Differential Expression

- DESeq2 models the gene counts for each gene as a negative bionomial distribution
- One of the fitting parameters is the Log2foldChange for each gene

Image credit: Paul Pavlidis, UBC https://hbctraining.github.io/DGE_workshop/lessons/04_DGE_DESeq2_analysis.html

Wald Test

Statistical test (like T-test) used for hypothesis testing:

- Null hypothesis: Log2foldChange(HIV counts/ Mock counts) == 0
- Alternative hypothesis: Log2FC(HIV counts/ Mock counts) != 0

DESeq2 implements the Wald test by:

- Taking the Log2foldChange and dividing it by its standard error, resulting in a z-statistic
- The z-statistic is compared to a standard normal distribution, and a p-value is computed reporting the probability that a z-statistic at least as extreme as the observed value would be selected at random
- If the p-value is small we reject the null hypothesis and state that there is evidence against the null (i.e. the gene is differentially expressed).

DESeq2 Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
EGR1	1273.65	-2.22	0.12	-18.65	1.25E-77	1.44E-73
MYC	5226.12	1.41	0.11	12.53	4.95E-36	2.87E-32
OPRK1	78.35	-1.83	0.17	-10.57	4.11E-26	1.59E-22
CCNI2	7427.12	0.93	0.10	9.43	4.27E-21	1.24E-17
STRA6	785.78	0.97	0.11	8.61	7.29E-18	1.69E-14

• Mean of normalized counts – averaged over all samples from two conditions

DESeq2 Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
EGR1	1273.65	-2.22	0.12	-18.65	1.25E-77	1.44E-73
MYC	5226.12	1.41	0.11	12.53	4.95E-36	2.87E-32
OPRK1	78.35	-1.83	0.17	-10.57	4.11E-26	1.59E-22
CCNI2	7427.12	0.93	0.10	9.43	4.27E-21	1.24E-17
STRA6	785.78	0.97	0.11	8.61	7.29E-18	1.69E-14

- Mean of normalized counts averaged over all samples from two conditions
- Log of the fold change between two conditions = Log2(HIV counts /Mock counts)

DESeq2 Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
EGR1	1273.65	-2.22	0.12	-18.65	1.25E-77	1.44E-73
MYC	5226.12	1.41	0.11	12.53	4.95E-36	2.87E-32
OPRK1	78.35	-1.83	0.17	-10.57	4.11E-26	1.59E-22
CCNI2	7427.12	0.93	0.10	9.43	4.27E-21	1.24E-17
STRA6	785.78	0.97	0.11	8.61	7.29E-18	1.69E-14

- Mean of normalized counts averaged over all samples from two conditions
- Log2 of the fold change between two conditions
- StdErr, standard error: Log2(HIV counts/Mock counts) = [-2.22 0.12, -2.22 + 0.12]
DESeq2 Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
EGR1	1273.65	-2.22	0.12	-18.65	1.25E-77	1.44E-73
MYC	5226.12	1.41	0.11	12.53	4.95E-36	2.87E-32
OPRK1	78.35	-1.83	0.17	-10.57	4.11E-26	1.59E-22
CCNI2	7427.12	0.93	0.10	9.43	4.27E-21	1.24E-17
STRA6	785.78	0.97	0.11	8.61	7.29E-18	1.69E-14

- Mean of normalized counts averaged over all samples from two conditions
- Log of the fold change between two conditions
- StdErr, standard error
- Wald Stats statistical test for hypothesis testing

DESeq2 Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adi
EGR1	1273.65	-2.22	0.12	-18.65	1.25E-77	1.44E-73
MYC	5226.12	1.41	0.11	12.53	4.95E-36	2.87E-32
OPRK1	78.35	-1.83	0.17	-10.57	4.11E-26	1.59E-22
CCNI2	7427.12	0.93	0.10	9.43	4.27E-21	1.24E-17
STRA6	785.78	0.97	0.11	8.61	7.29E-18	1.69E-14

- Mean of normalized counts averaged over all samples from two conditions
- Log2 of the fold change between two conditions
- Wald Stats statistical test for hypothesis testing
- P-value the probability that the Wald statistic is as extreme as observed if the null hypothesis were true
- Adjusted P value accounting for multiple testing correction

DESeq2 Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
EGR1	1273.65	-2.22	0.12	-18.65	1.25E-77	1.44E-73
MYC	5226.12	1.41	0.11	12.53	4.95E-36	2.87E-32
OPRK1	78.35	-1.83	0.17	-10.57	4.11E-26	1.59E-22
CCNI2	7427.12	0.93	0.10	9.43	4.27E-21	1.24E-17
STRA6	785.78	0.97	0.11	8.61	7.29E-18	1.69E-14

- Mean of normalized counts averaged over all samples from two conditions
- Log of the fold change between two conditions
- Wald Stats statistical test for hypothesis testing
- P-value the probability that the Wald statistic is as extreme as observed if the null hypothesis were true
- Adjusted P value accounting for multiple testing correction

DESeq2 P-value histogram

- Histogram of raw p-values for all genes examined
- P-value: Probability of getting a log2FoldChange as extreme as observed if the true log2FoldChange = 0 for that gene (null hypothesis)

How to interpret:

• Random P-values are expected to be uniform, if you have true positives you should see a peak close to zero

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

DESeq2 MA plot

Shows the relationship between

- M: The difference in expression
 Log(HIV) Log(Mock) = Log(HIV/Mock)
- A: Average expression strength Average(Mock, HIV)
- Genes with adjusted *p*-value < 0.1 are in red
- Gives an overview of your results

MA-plot for condition: mock vs hiv

Conclusions

References

DESeq2 vignette (R/Rstudio):

<u>http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#dif</u> <u>ferential-expression-analysis</u>

HBC Training (Command line/R): https://hbctraining.github.io/DGE_workshop

Galaxy Training: https://galaxyproject.org/tutorials/rb_rnaseq/

Outline

Bulk and single cell RNA sequencing

> Intro to Galaxy Platform for Bioinformatics (Tufts network or VPN required)

https://galaxy.cluster.tufts.edu/

Work through RNAseq example together on Galaxy

https://rbatorsky.github.io/in tro-to-rnaseq-with-galaxy/

> Turn in workshop questions on Canvas

- Galaxy

- Web-based platform for running data analysis and integration, geared towards bioinformatics
 - > Open-source
 - Developed at Penn State, Johns Hopkins, OHSU and Cleveland Clinic with many more outside contributions
 - Large and extremely responsive community

Galaxy on the Tufts HPC

javascript:void(0)

n Galaxy Tufts	Analyze Data Workflow Visualize - Shared Data - Admin Help - User -		Using 20%
Tools 🏠 📩		History	S + 🗆 🕈
search tools		search datasets	8
Get Data	Welcome to Galaxy on the Tufts University High Performance Compute Cluster	Unnamed history	
Send Data	Performance Compute Cluster:	(empty)	۲
Collection Operations	Tufts Galaxy Support»		
Expression Tools		1 This history is empt	y. You can load
Lift-Over	Take an interactive tour: Galaxy UI History Scratchbook	your own data or g an external source	et data from
Text Manipulation	For information about using Galaxy at Tufts, reference Galaxy		
Convert Formats	documentation, or visit the official GalaxyProject support page.		
Filter and Sort	For more information about Research Technology bioinformatics		
Join, Subtract and Group	services, visit the Biotools or email tts-research@tufts.edu.		
Fetch Alignments/Sequences			
Operate on Genomic Intervals			
Statistics			
Graph/Display Data			
Phenotype Association			
FASTQ Quality Control			
RNA-seq			
SAMTOOLS			

>

javascript:void(0)

TOP MENU BAR

n Galaxy Tufts	Analyze Data Workflow Visualize - Shared Data - Admin Help - User -		Using 20%		
Tools 🟠 🚣		History	3+□\$		
search tools		search datasets	8		
Get Data	Welcome to Galaxy on the Tufts University High	Unnamed history			
Send Data	Performance Compute Cluster:	(empty)	۲		
Collection Operations	Tufts Galaxy Support»				
Expression Tools		1 This history is emp	ty. You can load		
Lift-Over	Take an interactive tour: Galaxy UI History Scratchbook	an external source	get data from		
Text Manipulation	For information about using Galaxy at Tufts, reference Galaxy				
Convert Formats	documentation, or visit the official GalaxyProject support page.				
Filter and Sort	For more information about Research Technology bioinformatics	For more information about Research Technology bioinformatics			
Join, Subtract and Group	services, visit the Biotools or email tts-research@tufts.edu.				
Fetch Alignments/Sequences					
Operate on Genomic Intervals					
Statistics					
Graph/Display Data					
Phenotype Association					
FASTQ Quality Control					
RNA-seq					
SAMTOOLS					
iavascript:void(0)			>		

- - - -

TOP MENU BAR

TOP MENU BAR

	Analyze Data Workflow Visualize - Shared Data - Admin Help - User -		HISTORY 20%
Tools ☆ ⊥ search tools Image: Collection Operations	MAIN Welcome to Galaxy on the Tufts University High Performance Compute Cluster! Tufts Galaxy Support»	History search Unnam (empty)	h datasets
Expression Tools Lift-Over Text Manipulation Convert Formats Filter and Sort Join, Subtract and Group	Take an interactive tour: Galaxy UI History Scratchbook For information about using Galaxy at Tufts, reference Galaxy documentation, or visit the official GalaxyProject support page. For more information about Research Technology bioinformatics services, visit the Biotools or email tts-research@tufts.edu.	This your an e	history is empty. You can load r own data or get data from xternal source
Fetch Alignments/Sequences Operate on Genomic Intervals Statistics Graph/Display Data Phenotype Association FASTQ Quality Control RNA-seq SAMTOOLS			

RNA extraction

Good resource: Griffiths et al Plos Comp Bio 2015

Next Generation Sequencing (NGS)

https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell. After laser excitation, capture the image of emitted fluorescence from each duster on the flow cell. Record the identity of the first base for each duster. Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

Laser

https://sites.google.com/site/himbcorelab/illumina_sequencing

Final Heatmap – not part of DESeq2 output

Common RNAseq analysis goals

- Novel transcript discovery
- Transcriptome assembly
- Single cell analysis
- Quantify alternative splicing
- Differential Expression

Replace with actual heatmap

Fig 1. An overview of the central dogma of molecular biology.

Fig 2. RNA-seq data generation.

Downstream analysis

Fig 3. RNA-seq library fragmentation and size selection strategies that influence interpretation and analysis.

Fig 4. RNA-seq library enrichment strategies that influence interpretation and analysis.

Expected Alignments

Fig 6. Comparison of stranded and unstranded RNA-seq library methods and their influence on interpretation and analysis.

Test for Differential Expression

DESeq2 will seek to fit a probability distribution to each gene we measured and perform a statistical test to determine whether there is a difference between conditions

Deviation from global mean

No Significant Difference

Reference-based vs Reference-free RNAseq

RNAseq can be roughly divided into two "types":

- **Reference genome-based** an assembled genome exists for a species for which an RNAseq experiment is performed. It allows reads to be aligned against the reference genome and significantly improves our ability to reconstruct transcripts. This category would obviously include humans and most model organisms
- **Reference genome-free** no genome assembly for the species of interest is available. In this case one would need to assemble the reads into transcripts using *de novo* approaches. This type of RNAseq is as much of an art as well as science because assembly is heavily parameter-dependent and difficult to do well.

In this lesson we will focus on the **Reference genome-based** type of RNA seq.

FastQC: Adapter content

The cause: The "insert" sequence is shorter than the read, and the read contains part of the adapter sequence

FastQC will scan each read for the presence of known adapter sequences

The plot shows that the adapter content rises over the course of the read

Solution – Adapter trimming!

STAR Aligner (Spliced Transcripts Alignment to a Reference)

Highly accurate, memory intensive **aligner** Two phase mapping process

- 1. Find Maximum Mappable Prefixes (MMP) in a read. MMP can be extended by
 - mismatches
 - Indels
 - soft-clipping

STAR Aligner (Spliced Transcripts Alignment to a Reference)

Highly accurate, memory intensive **aligner** Two phase mapping process

- 1. Find Maximum Mappable Prefixes (MMP) in a read. MMP can be extended by
 - mismatches
 - Indels
 - soft-clipping

2. Clustering MMP, stitching and scoring to determine final read location

STAR Aligner (Spliced Transcripts Alignment to a Reference)

Highly accurate, memory intensive **aligner** Two phase mapping process

- 1. Find Maximum Mappable Prefixes (MMP) in a read. MMP can be extended by
 - mismatches
 - Indels
 - soft-clipping

2. Clustering MMP, stitching and scoring to determine final read location

Output is a Sequence Alignment Map (SAM) file

Tracking read numbers

Revisit quality control after each processing step!

Number of Reads	Source	Result
Raw reads	FastQC run 1	8 M
After Trimming	FastQC run 2	7.1 M
Aligned to genome	STAR log	6 M
Associated with genes	FeatureCounts log	5.4 M

Multi-factor experiment design

Factor 1: Infection status (Mock or HIV)

Factor 2: Time (12 or 24 hr)

Sample	Condition	Time
1	Mock	12
2	Mock	12
3	Mock	12
4	Mock	24
5	Mock	24
6	Mock	24
7	HIV	12
8	HIV	12
9	HIV	12
10	HIV	24
11	HIV	24
12	HIV	24

10x single cell technology

https://github.com/hbctraining/scRNA-seq